Volumes of Generalized Chan–Robbins–Yuen Polytopes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volumes of Convex Lattice Polytopes

We show by a direct construction that there are at least exp{cV (d−1)/(d+1)} convex lattice polytopes in R of volume V that are different in the sense that none of them can be carried to an other one by a lattice preserving affine transformation. This is achieved by considering the family Pd(r) (to be defined in the text) of convex lattice polytopes whose volumes are between 0 and r/d!. Namely ...

متن کامل

Volumes of Symmetric Random Polytopes

UK,N = 1 |K| | conv{x1, . . . , xN}|, where |A| denotes the volume of a Borel set A ⊂ R, and x1, . . . , xN are independent random points uniformly distributed in K. That is, UK,N is the normalized volume of a random polytope in K; in particular, UK = UK,n+1 is the normalized volume of a random simplex in K. Note that the distribution of UK,N is an affine invariant of K. For K ∈ Ks and N ≥ n, w...

متن کامل

Matroid Polytopes and their Volumes

We express the matroid polytope PM of a matroid M as a signed Minkowski sum of simplices, and obtain a formula for the volume of PM . This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian Grk,n. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of M . Our proofs are based on a natural...

متن کامل

Expectation of intrinsic volumes of random polytopes

Let K be a convex body in Rd, let j ∈ {1, . . . , d − 1}, and let K(n) be the convex hull of n points chosen randomly, independently and uniformly from K. If ∂K is C2 +, then an asymptotic formula is known due to M. Reitzner (and due to I. Bárány if ∂K is C3 +) for the difference of the jth intrinsic volume of K and the expectation of the jth intrinsic volume of K(n). We extend this formula to ...

متن کامل

Generalized associahedra via brick polytopes

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2019

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-019-00066-1